
J Math Chem (2012) 50:1–8
DOI 10.1007/s10910-011-9902-8

BRIEF COMMUNICATION

Parametric uniqueness of deficiency zero reaction
networks

Dávid Csercsik · Gábor Szederkényi ·
Katalin M. Hangos

Received: 2 December 2010 / Accepted: 16 August 2011 / Published online: 28 August 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper it is shown that deficiency zero mass action reaction networks
containing one terminal linkage class are parametrically and therefore structurally
unique with a fixed complex set. Clearly, weakly reversible deficiency zero networks
with one linkage class belong to this class. However, it is shown through an illustrative
example that deficiency zero networks with several linkage classes can have multiple
dynamically equivalent realizations, even if the individual linkage classes are weakly
reversible.

Keywords Reaction kinetic systems · Mass action kinetics · Dynamical equivalence

1 Introduction

According to the well-known “fundamental dogma of chemical kinetics” different
reaction networks can produce the same kinetic differential equations [9]. This means,
that dynamically equivalent representations called realizations—i.e. reaction networks
with possibly different structure and/or reaction rate coefficients from the original
one—may exist that still lead to the same kinetic differential equations. This fact has a
great importance from the viewpoint of analyzing the properties of a reaction kinetic
system given by its kinetic differential equations, because some of the most important
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structural properties, such as (weak) reversibility or deficiency are realization-
dependent, i.e. they may change depending of the particular realization.

Reaction kinetic systems form a special sub-class of positive systems with smooth,
polynomial nonlinearities in the ordinary differential equation (ODE) description
implied by the mass action law [13]. Beside the description of classical chemical
reactions, chemical reaction networks (CRNs) are the main building blocks of highly
interconnected biochemical networks with complex behavior such as metabolic or cell
signalling pathways [12].

Because of the significance of structural properties [1,2,4], it is of great practical
and theoretical interest to find realizations of a given reaction kinetic system with
desired properties. The first step to this is to solve the so-called inverse problem of
reaction kinetics (i.e. the characterization of those polynomial differential equations
which are kinetic), that was published in [7]. Recently, optimization-based compu-
tational algorithms have been presented for the construction of CRN structures with
preferred properties such as reversibility or minimal/maximal number of reactions and
complexes in [10,11].

The aim of this paper is to analyze the relations between the structural properties
and realization uniqueness of reaction networks. Chemical reactions are understood in
a wide generalized sense in the paper (like, e.g. in [4] or [3]), because the constraints
of (component) mass conservation are not taken into account.

2 Description and relevant properties of chemical reaction networks

2.1 Dynamics and structure of reaction networks obeying the mass action law

Let us suppose Xi , i = 1, . . . , n chemical species taking part in r chemical reactions.
The concentrations xi , i = 1, . . . , n form the state vector the elements of which

are non-negative by nature. The elementary reaction steps taking place between the
chemical species are in the following form [6]:

n∑

i=1

αi j Xi →
n∑

i=1

βi j Xi , j = 1, . . . , r (1)

where αi j is the so-called stoichiometric coefficient of component Xi in the j th reac-
tion, and βi� is the stoichiometric coefficient of the product X�. The linear combina-
tions of the species in Eq. (1), namely

∑n
i=1 αi j Xi and

∑n
i=1 βi j Xi for j = 1, . . . , r

are called the complexes and are denoted by C1,C2, . . . ,Cm . The stoichiometric coef-
ficients are always non-negative integers.

We say that the reaction network (1) obeys the mass action law (MAL), if the
reaction rate of the above reactions can be described as

ρ j = k j

n∏

i=1

[Xi ]αi j = k j

n∏

i=1

x
αi j
i , j = 1, . . . , r (2)

123



J Math Chem (2012) 50:1–8 3

where [Xi ] = xi is the concentration of the component Xi , and k j > 0 is the reaction
rate constant of the j th reaction, that is always positive.

We use the following dynamical description to describe the time-evolution of specie
concentrations [3,4]:

ẋ = Y · Ak · ψ(x) (3)

where Y ∈ R
n×m stores the stoichiometric composition of the complexes, Ak ∈ R

m×m

contains the information corresponding to the weighted directed graph of the reaction
network, and ψ : R

n �→ R
m is a monomial-type vector mapping defined by

ψ j (x) =
n∏

i=1

x
yi j
i , j = 1, . . . ,m (4)

where yi j = [Y ]i j . The explanation of the structures of Y and Ak is the following. The
i th column of Y contains the composition of complex Ci , i.e. Y ji is the stoichiometric
coefficient of Ci corresponding to the specie X j .Ak is a column conservation matrix
(i.e. the sum of the elements in each column is zero) defined as

[Ak]i j =
{−∑m

l=1,l �=i kil , if i = j
k ji , if i �= j

(5)

Based on the above, we will call a quadratic matrix a Kirchhoff matrix, if it is a col-
umn conservation matrix with non-positive diagonal and non-negative off-diagonal
entries. Using Y and Ak , it is possible to assign a weighted directed graph (often called
‘Feinberg-Horn-Jackson graph’) to a reaction network, where the vertices correspond
to complexes, reactions are represented by directed edges between complexes, and the
weights corresponding to directed edges are the appropriate reaction rate coefficients
[4,13]. We note that the Laplacian matrix of a weighted directed graph is often defined
as −AT

k .
A set of complexes {C1,C2, . . . ,Ck} is a linkage class of a reaction network if

the complexes of the set are linked to each other in the reaction graph but not to any
other complex [4] (i.e. the individual linkage classes form the connected components
of the directed graph of the reaction network). Two different complexes are said to
be strongly linked if there exists a directed path from one complex to the other, and
a directed path from the second complex back to the first. Moreover, each complex
is defined to be strongly linked to itself. A strong linkage class is a set of complexes
with the following properties: each pair of complexes in the set is strongly linked, and
no complex in the set is strongly linked to a complex that is not in the set. A terminal
strong linkage class is a strong linkage class that contains no complex that reacts to
a complex in a different strong linkage class (i.e. there is no “exit” from a terminal
strong linkage class through a directed edge).

For the reaction Ci → C j , the corresponding reaction vector vi j is defined as

vi j = [Y ]·, j − [Y ]·,i (6)
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where [Y ]·,i denotes the i th column of Y . The rank of a reaction network denoted by
s is defined as the rank of the vector set H = {vi j | Ci → C j exists}. We use the
classical definition for the deficiency δ of a reaction network [4]:

δ = m − l − s (7)

where m is the number of complexes in the network, l is the number of linkage classes
(graph components) and s is the rank of the reaction network.

2.2 Dynamically equivalent reaction networks

It is known that reaction networks with different structures and/or parametrizations can
give rise to the same kinetic differential equations [9–11]. Therefore, we will call two
reaction networks given by the matrix pairs (Y (1), A(1)k ) and (Y (2), A(2)k ) dynamically
equivalent, if

Y (1)A(1)k ψ(1)(x) = Y (2)A(2)k ψ(2)(x) = f (x), (8)

where for i = 1, 2, Y (i) ∈ R
n×mi have nonnegative integer entries, A(i)k are valid

Kirchhoff matrices, and

ψ
(i)
j (x) =

n∏

k=1

x
[Y (i)]k j
k , j = 1, . . . ,mi . (9)

In this case, (Y (i)A(i)k ) for i = 1, 2 are called realizations of a kinetic vector field f .

It is also appropriate to call (Y (1), A(1)k ) a realization of (Y (2), A(2)k ) and vica versa.

3 Realizations of deficiency zero CRNs with one terminal strong linkage class
are unique

In this section, we will prove that CRNs with one terminal strong linkage class can-
not have multiple different realizations, if the set of complexes is fixed. For this,
we will use the following standard notations. The dimension of a vector space V is
denoted by dim(V ). For an arbitrary matrix M , its rank, image and kernel is denoted by
rank(M), Im M , and Ker M , respectively. Furthermore, let us denote the i th column
of a matrix M with [M].,i .

Additionally, the following relations known from linear algebra and CRN theory
will be used. (For R1–R4, the reader is referred to e.g. [8], while R5, R6 can be found
in [3,5], respectively)

R1 For any two matrices A, B for which AB exists rank(AB) ≤ min(rank(A),
rank(B)).

R2 (Rank-nullity theorem) For any k × l matrix M, dim(Im M)+dim(Ker M) = l.
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R3 For any matrices A, B such that the product B A exists

dim(Im A ∩ Ker B) = dim(Im A)− dim(Im(B A))

= dim(Ker(B A))− dim(Ker A) (10)

R4 The maximal rank of a set V = {v(1), . . . , v(k)} of n-dimensional vectors for
which

∑n
i=1 v

( j)
i = 0, for j = 1, . . . , k and k >= n, is n − 1. To see this, let us

form the following matrix from the vectors v(1), . . . , v(k)

M = [v(1) v(2) . . . v(k)] (11)

The maximal row rank of M is clearly n − 1, since the zero vector can be con-
structed as a nontrivial linear combination (i.e. a simple addition) of the rows
of V . The row and column ranks of any matrix are always equal, therefore the
maximal number of linearly independent vectors in V is n − 1.

R5 If a CRN with the Kirchhoff matrix Ak ∈ R
m×m has one terminal strong linkage

class, then dim(Im Ak) = m − 1.
R6 If each linkage class of a CRN given by (Y, Ak) contains precisely one terminal

strong linkage class, then the deficiency δ of the network is δ = dim(Im Ak ∩
Ker Y ).

Taking into consideration the preliminary facts R1–R6, we can now state our main
theorem.

Theorem 3.1 Any deficiency zero CRN given by (Y, Ak)with one terminal strong link-
age class is parametrically and therefore structurally unique, if the set of complexes is
fixed, i.e. there is no Kirchhoff matrix A′

k different from Ak such that Y · Ak = Y · A′
k .

Proof (Indirect) Let us assume that there exists a Kirchhoff matrix A′
k �= Ak such that

Y Ak = Y A′
k . Then Y (Ak − A′

k) = 0. Let Âk = Ak − A′
k . It is clear that Âk is also a

column conservation matrix (not necessarily Kirchhoff), and that the columns of Âk

belong to the kernel of Y , i.e. [ Âk].,i ∈ Ker Y for i = 1, . . . ,m. From this it follows
that dim(Ker Y ) ≥ 1 since Âk is nonzero.

From R5 we know that dim(Im Ak) = m − 1. From R3 and R6 it follows that
dim(Im Ak) = dim(Im(Y Ak)), i.e. dim(Im(Y Ak)) = m − 1. Using R1 we get that
dim(Im Y ) ≥ m − 1 that implies dim(Ker Y ) ≤ 1. From the two estimations on
the dimension of Ker Y we obtain that dim(Ker Y ) = 1, and (by using R2) that
dim(Im Y ) = m − 1.

Since Âk is a column conservation matrix, for anyv ∈ Ker Y it is true that
∑m

i=1 vi =
0. Then, according to R4, Ker Y ⊂ Im Ak , and therefore dim(Im Ak ∩ Ker Y ) cannot
be zero, which is a contradiction. ��
The following points are important to remark.

1. Deficiency zero weakly reversible networks with one linkage class form an impor-
tant subset of the CRNs for which Theorem 3.1 is valid.
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2. If for a given set of complexes Y , a CRN has two different dynamically equivalent
realizations characterized by Ak and A′

k , then it has infinitely many, because e.g.

A′′
k = Ak+A′

k
2 also defines a valid realization with Y .

3. To obtain other possible realizations, Ak can be modified such that any vector
constructed as a linear combination of the basis of Ker Y and satisfying that the
sum of its elements is zero (i.e. the column conservation property) can be added to
any column of Ak as long as the off diagonal and diagonal entries in the resulting
A′

k matrix remain non-negative and non-positive, respectively (see Example 3.1).
4. Theorem 3.1 is naturally valid for CRNs composed of multiple linkage classes

each of which has precisely one terminal linkage class, if the sets of species
belonging to the individual linkage classes are mutually disjoint. In this case, the
linkage classes can be treated as separate independent CRNs. However, if there
are common species between the linkage classes, then zero deficiency and even
(weak) reversibility of the linkage classes are not sufficient for the uniqueness of
the realization, as Example 3.1 will show.

Example 3.1 In this example we will show that deficiency 0 does not guarantee the
uniqueness of the realization in the case of multiple linkage classes. Consider the reac-
tion network the graph of which is shown in Fig. 1. Let us number the complexes as

C1 = X1, C2 = 2X1 + X2, C3 = 2X2, C4 = 3X1 + X2

Then the matrices of the description (3) are the following:

Y =
[

1 2 0 3
0 1 2 1

]
, Ak =

⎡

⎢⎢⎣

−1 2 0 0
1 −2 0 0
0 0 −3 2
0 0 3 −2

⎤

⎥⎥⎦ (12)

M = Y Ak =
[

1 −2 9 −6
1 −2 −3 2

]
(13)

Ker Y = span

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

4
−2
1
0

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

−1
−1
0
1

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
, (14)

Fig. 1 Simple reaction network
of Example 3.1
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Fig. 2 Dynamically equivalent
one linkage class realization of
the CRN of Example 3.1

A vector v with zero sum can easily be constructed from the above basis of Ker Y as

v =

⎡

⎢⎢⎣

4
−2
0
1

⎤

⎥⎥⎦ + 3

⎡

⎢⎢⎣

−1
−1
0
1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
−5
1
3

⎤

⎥⎥⎦ (15)

If we add v to the second column of Ak , we obtain a Kirchhoff matrix that defines
another realization of the initial CRN:

A′
k =

⎡

⎢⎢⎣

−1 3 0 0
1 −7 0 0
0 1 −3 2
0 3 3 −2

⎤

⎥⎥⎦ (16)

It can be checked that M = Y Ak = Y A′
k . It is noticable from Fig. 2 that the deficiency

of the second realization with A′
k is 1, because it contains only one linkage class.

4 Conclusions

It has been shown that the realizations of deficiency zero reaction networks with one
strong terminal linkage class are unique if the set of chemical complexes is fixed.
The result is therefore valid for weakly reversible deficiency zero networks with one
linkage class. The given easily verifiable structural condition can be useful during
the modeling and structure or parameter estimation of dynamic processes described
by chemical reaction networks. It has also been shown through an example that the
deficiency zero property in itself is not enough for realization uniqueness.
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